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Abstract. In this paper, we introduce the usage of a newly
developed spectral decomposition technique – combined
maximum covariance analysis (CMCA) – in the spatiotem-
poral comparison of four satellite data sets and ground-
based observations of aerosol optical depth (AOD). This
technique is based on commonly used principal compo-
nent analysis (PCA) and maximum covariance analysis
(MCA). By decomposing the cross-covariance matrix be-
tween the joint satellite data field and Aerosol Robotic Net-
work (AERONET) station data, both parallel comparison
across different satellite data sets and the evaluation of the
satellite data against the AERONET measurements are si-
multaneously realized. We show that this new method not
only confirms the seasonal and interannual variability of
aerosol optical depth, aerosol-source regions and events rep-
resented by different satellite data sets, but also identifies the
strengths and weaknesses of each data set in capturing the
variability associated with sources, events or aerosol types.
Furthermore, by examining the spread of the spatial modes
of different satellite fields, regions with the largest uncertain-
ties in aerosol observation are identified. We also present two
regional case studies that respectively demonstrate the capa-
bility of the CMCA technique in assessing the representa-
tion of an extreme event in different data sets, and in evalu-
ating the performance of different data sets on seasonal and
interannual timescales. Global results indicate that different
data sets agree qualitatively for major aerosol-source regions.
Discrepancies are mostly found over the Sahel, India, east-
ern and southeastern Asia. Results for eastern Europe suggest

that the intense wildfire event in Russia during summer 2010
was less well-represented by SeaWiFS (Sea-viewing Wide
Field-of-view Sensor) and OMI (Ozone Monitoring Instru-
ment), which might be due to misclassification of smoke
plumes as clouds. Analysis for the Indian subcontinent shows
that here SeaWiFS agrees best with AERONET in terms of
seasonality for both the Gangetic Basin and southern India,
while on interannual timescales it has the poorest agreement.

1 Introduction

Global aerosol properties are highly variable in space and
time. Aerosols from different regions generally have differ-
ent chemical compositions, emission sources, and are sub-
ject to different meteorological conditions. Understanding
the spatial and temporal variability of aerosols is critical in
quantifying their direct and indirect climate effects. Satel-
lite observations have become and will be an indispens-
able source of information about aerosol characteristics for
use in various assessments of climate change (King et al.,
1999). In the past decade, many satellite sensors have been
developed to monitor global aerosol properties and have
greatly advanced our knowledge of aerosols and their vari-
ability. These aerosol products have been validated against
ground-based measurements from the Aerosol Robotic Net-
work (AERONET, Holben et al., 1998; Dubovik et al., 2002),
and their data accuracy and reliability are confirmed (e.g.,
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Levy et al., 2010; Kahn et al., 2005; Sayer et al., 2012;
Torres et al., 2007). As a result, they have been exten-
sively used in various aerosol and climate-related studies.
For example, Kalashnikova and Kahn (2005) used Multian-
gle Imaging Spectroradiometer (MISR) and Moderate Res-
olution Imaging Spectroradiometer (MODIS) aerosol prod-
ucts to study mineral dust plume evolution over the Atlantic,
Torres et al. (2010) studied the anomalous biomass burning
in the Southern Hemisphere using aerosol retrievals from
the Ozone Monitoring Instrument (OMI) and MODIS, and
Hsu et al. (2012) investigated global and regional trends in
aerosol optical depth using Sea-viewing Wide Field-of-view
Sensor (SeaWiFS) measurements. In these studies, usually
only one or two data sets were used to study the physi-
cal problem. With multiple data sets available, it is desir-
able to take advantage of all available pieces of informa-
tion in one analysis in order to yield more reliable results.
Several authors have used aerosol retrievals from multiple
sensors in their study. Nabat et al. (2013) created a 4-D cli-
matology of monthly mean aerosol optical depth over the
Mediterranean using nine satellite-derived AOD (aerosol op-
tical depth) products. Carboni et al. (2012) evaluated desert
dust optical depth retrievals from eight different satellite in-
struments. Another application of multisensor aerosol data is
to validate and constrain aerosol parameterizations in climate
models. Kinne et al. (2003, 2006) compared global monthly
mean aerosol properties between AeroCom aerosol modules
and several satellite data sets. Liu et al. (2006) assessed the
GISS (Goddard Institute for Space Studies) ModelE aerosol
climatology against multiple satellite retrieval products. In
these multisensor applications, although different data sets
achieved an overall global agreement, considerable regional
differences were revealed that were associated with different
aerosol sources or transport regimes. Regional differences
between satellite-retrieved aerosol properties were also re-
ported for India (Prasad and Singh, 2007), for South Amer-
ica (Ahn et al., 2008), and for southeastern Asia (Xiao et
al., 2009). Therefore, effective and efficient use of multisen-
sor data sets requires an understanding of the strengths and
weaknesses of each data set in representing different aerosol
types and variability in different regions of the world.

Previously, we have demonstrated that spectral decom-
position techniques such as principal component analysis
(PCA) can be effectively used to examine the spatial and
temporal variability in multidimensional aerosol observa-
tions (Li et al., 2009, 2011, 2013). Many global and re-
gional aerosol-source regions and their seasonal and inter-
annual variability are successfully captured by the domi-
nant orthogonal modes. We furthermore introduced the max-
imum covariance analysis (MCA) method that allows verify-
ing the variability revealed by a particular satellite data set
through the comparison with ground-based measurements
from AERONET (Li et al., 2014a). And in Li et al. (2014b),
we applied combined principal component analysis (CPCA)
to achieve a parallel examination and comparison of the

spatial and temporal variability in aerosol optical depth as
measured by multiple satellite data sets. The CPCA method
is powerful in both confirming the agreement and finding lo-
cations and times of disagreement between the satellite data
sets. However, a major drawback is that the CPCA method-
ology by itself does not accommodate the inclusion of scat-
tered ground observations, as combining different fields as-
sumes equal weight and is thus only suitable for gridded data
with the same spatial mapping. The MCA does incorporate
ground-based data; however, its results alone are not suffi-
cient to select which data set best characterizes aerosol vari-
ability for a particular region, in that the method only evalu-
ates one satellite data set against AERONET. For multisensor
data analysis, it is necessary to simultaneously examine the
capability of each data set in representing aerosol variability
for particular regions, in order to determine which data set
or data sets provide the best constraints on the aerosol prop-
erty for the regions of interest. Such information is critical in
many aspects of satellite data application, such as develop-
ing aerosol parameterization schemes and extending station
measurements to a broader spatial context. In this study, we
develop a new technique – the combined maximum covari-
ance analysis (CMCA) – to bridge the gap between MCA
and CPCA by examining and comparing spatial and tempo-
ral variability retrieved by multiple satellite sensors as well as
incorporating more randomly distributed ground-based sta-
tion data such as AERONET. Compared with previous tech-
niques, the advantages of the CMCA include (1) integrat-
ing all available information from both satellite and surface
measurements resulting in a more complete view of the pic-
ture; (2) the common modes of variability revealed through
CPCA can be further confirmed, and the problems in each
satellite data set can be identified through the comparison
with ground-truth measurements; and (3) the examination
and comparison is associated with specific aerosol sources,
types or events, which are essential for both understanding
the physics of the problem and improving satellite retrievals.

The goals of this paper are to introduce and highlight the
utility of the CMCA technique and thereby promote its usage
by the aerosol data community. We describe data selection,
preprocessing and the detailed analysis procedure in Sects. 2
and 3. In Sect. 4, we present the results of our global analysis
and two representative regional case studies that demonstrate
the usefulness of this technique, while readers are welcome
to use the method to explore additional regions based on their
specific interest. Finally, a summary and discussion of po-
tential extended usage of the CMCA technique is given in
Sect. 5.

2 Data sets

We use monthly mean, gridded AOD products from four
satellite sensors: MODIS, MISR, OMI and SeaWiFS. These
four data sets have all been validated against ground
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observations and have reasonably good global coverage.
Only over-land data are used primarily because the major-
ity of AERONET stations are located over land. The ground-
based observations are from 58 selected AERONET stations
(considered a benchmark for satellite data). The period of
study is chosen to be from January 2005 to December 2010,
which corresponds to the period of the longest overlap for
the four satellite data records. Finally, because OMI AOD is
reported at 500 nm while MODIS, MISR and SeaWiFS re-
port AOD at multiple wavelengths, to facilitate parallel com-
parison, we interpolate MODIS, MISR and SeaWiFS AOD
to 500 nm according to the Ångström power law, which is a
linear interpolation using AOD measured at different wave-
lengths on logarithm scale. The wavelengths used for each
sensor are detailed below.

2.1 MODIS

The MODIS instrument is a multispectral radiometer, which
has the capability of retrieving aerosol microphysical and op-
tical properties over land and ocean (Tanré et al., 1997; Levy
et al., 2007). The 2330 km swath width of the MODIS in-
strument produces a global coverage in 1 or 2 days and cap-
tures most of aerosol variability due to this high sampling
frequency. The MODIS on the Aqua platform is used here,
as Terra MODIS AOD is not as complete as Aqua over desert
regions. The official Level 3 monthly mean AOD product at
1◦

× 1◦ resolution is used for this study (MYD08_M3, col-
lection 5.1, available fromftp://ladsweb.nasacom.nasa.gov/
allData/51/MYD08_M3). We use QA (quality assurance)
weighted averages (“*QA_Mean_Mean” variables; Hubanks
et al., 2008) for both dark target (DT; Levy et al., 2010) and
deep blue (DB) AOD retrievals (Hsu et al., 2004, 2006). The
deep-blue algorithm covers most of the dust regions and is
thus important for the analysis. Note that in the MODIS col-
lection 6 data, merged DT and DB will be provided as a stan-
dard product (Levy et al., 2013). However, since the collec-
tion 6 data are not yet available for Level 3, we merge these
two products by ourselves here. The DT and DB products
are combined following the procedure described by Levy et
al. (2013) for collection 6, which determines the selection of
DT or DB product according to the MODIS NDVI (normal-
ized difference vegetation index) climatology. Specifically,
for NDVI > 0.3, DT data are selected, for NDVI< 0.2, DB
data are selected and for 0.2≤ NDVI ≤ 0.3, an average of DT
and DB AOD is used. Nonetheless, this merging of DT and
DB products will result in a seasonally varying product type
for some regions with seasonally varying NDVI, especially
for semiarid areas such as the Sahel, western US, northern
India and eastern China. To examine the consistency of these
two products, in Fig. 1 we plot the merged DT and DB AOD
time series and the NDVI time series at four AERONET sta-
tions with changing vegetation type: Banizoumbou, Beijing,
Bratt’s Lake and Kanpur. Note the NDVI time series only
shows the climatology without interannual variability, which

Figure 1. Merged MODIS DT and DB AOD products at four
AERONET stations with seasonally varying vegetation index
(NDVI). The merging of the data appears consistent.

is the same as Levy et al. (2013). We find that the time series
appear rather smooth, indicating that the merging of DT and
DB products has negligible influence on the overall data con-
sistency. The MODIS AOD is interpolated to 500 nm using
measurements at 470 and 660 nm.

2.2 MISR

The MISR is a multiangle sensor with nine push-broom cam-
eras on the EOS Terra platform. The zonal overlap of the
common swath of all nine cameras is at least 360 km in order
to provide multiangle coverage in 9 days at the Equator, and
2 days at the poles (Diner et al., 1998). Compared to MODIS,
the multiangle view of MISR performs better over bright sur-
faces (Kahn et al., 2005, 2010). However, MISR has a nar-
rower swath width leading to a longer revisit time, and thus
may not fully resolve short timescale variability. In this study,
we use version 31 Level 3 gridded monthly products, avail-
able athttp://eosweb.larc.nasa.gov. The original 0.5◦ × 0.5◦

data resolution has been rescaled to 1◦
× 1◦. The rescaling is

performed by assigning equal weights to each subgrid, and
the final 1◦ × 1◦ grid is considered valid only when more
than half of the subgrids have valid data. The data are also
interpolated to 500 nm using measurements at the four MISR
wavelengths of 446, 555, 672 and 865 nm.

2.3 SeaWiFS

The SeaWiFS instrument was launched on the SeaStar space-
craft in 1997. It is also a wide view imager with a swath width
of 1502 km and covered the globe in approximately 2 days.
The SeaWiFS over-land aerosol retrieval uses the deep
blue algorithm developed by Hsu et al. (2004, 2006). The
AOD data over land have been validated using AERONET

www.atmos-meas-tech.net/7/2531/2014/ Atmos. Meas. Tech., 7, 2531–2549, 2014

ftp://ladsweb.nasacom.nasa.gov/allData/51/MYD08_M3
ftp://ladsweb.nasacom.nasa.gov/allData/51/MYD08_M3
http://eosweb.larc.nasa.gov


2534 J. Li et al.: Application of spectral analysis techniques

measurements (Sayer et al., 2012). Here we use the stan-
dard Level 3 monthly mean AOD product version 004, avail-
able athttp://mirador.gsfc.nasa.gov/. The data are converted
to 500 nm using the reported AOD values at 412, 490 and
670 nm.

2.4 OMI

The OMI sensor (Levelt et al., 2006) on the EOS Aura satel-
lite has been providing global aerosol measurements since
October 2005. The OMI instrument also has a wide swath
of 2600 km and produces daily global coverage. The AOD
data used here are derived from the UV (ultraviolet) algo-
rithm (OMAERUV; Torres et al., 2007, 2013). OMAERUV
makes use of the instrument’s two near-UV channels to re-
trieve AOD and single scattering albedo at 388 nm, and the
500 nm AOD reported in the standard product is converted
according to the spectral dependence of the assumed aerosol
model (Torres et al., 2007, 2013; Ahn et al., 2008). While
the reliability of the 500 nm AOD is affected by aerosol
model assumptions, comparisons with AERONET, MODIS
and MISR showed reasonable agreement (Torres et al., 2007;
Ahn et al., 2008). Moreover, the upgraded OMI algorithm
by Torres et al. (2013), which made use of aerosol layer
information derived from CALIPSO (Cloud-Aerosol Lidar
and Infrared Pathfinder Satellite Observation) and AIRS (At-
mospheric Infrared Sounder), produced noticeable improve-
ments on the retrieval of dust and smoke aerosols. Addition-
ally, the evaluation work by Ahn et al. (2014) on the upgraded
algorithm indicated improved agreements with ground-based
observations and comparable accuracy with MODIS deep
blue algorithm and MISR retrievals over arid and semiarid
areas. Here we use collection 003 data from the upgraded
algorithm at 1◦ × 1◦ spatial resolution, available from the
Goddard Earth Sciences Data and Information Services Cen-
ter (http://mirador.gsfc.nasa.gov/). Note that as the current
OMAERUV algorithm does not explicitly account for ocean
color effects, retrievals over ocean are limited to absorbing
aerosols as identified by the aerosol index. Therefore, it is
only used over land and in regional analyses. The wide swath
of OMI provides daily global coverage. However, its rel-
atively large footprint (13× 24 km2 at nadir) makes cloud
contamination a more serious issue in OMI retrievals (Tor-
res et al., 2007).

2.5 AERONET

AERONET (Holben et al., 1998) is a ground-based sun-
photometer network with over 400 stations globally. The
AERONET AOD is derived from direct beam solar measure-
ments (Holben et al., 2001) at two UV channels at 340 and
380 nm, and five visible channels at 440, 500, 675, 870 and
1020 nm. The measurements from AERONET are usually re-
garded as ground truth when assessing satellite retrievals of
aerosol properties. In this study, we also consider the AOD

variability represented by AERONET data as the benchmark
against which we evaluate the different satellite data sets. The
data used are the version 2 Level 2 quality-assured and cloud-
screened (Smirnov et al., 2000; Holben et al., 2006) monthly
mean AOD product. As the CMCA technique requires the
construction of the temporal cross-covariance matrix, the
completeness of the AERONET AOD time series is criti-
cal to the success of the analysis. Therefore, we select sta-
tions primarily based on the availability of a continuous data
record for the study period of 2005 to 2010. Three steps are
involved in the selection and quality control of AERONET
data: (1) data from all stations are automatically screened by
a threshold of at least eight monthly mean data points each
year from 2005 to 2010; (2) the selected stations are fur-
ther manually screened by removing stations with relatively
large gaps (≥ 3 months) in the time series. This is because
we need to interpolate to fill the gaps and generally interpo-
lation with gaps greater than three data points will result in
large uncertainty. (3) A few stations that do not strictly meet
the above criteria are added to account for regions with rep-
resentative aerosol variability. These stations are primarily
based in Asia, including Pune and Gandhi College in India,
Mukdahan in Thailand and Singapore. A total of 58 stations
are selected globally. Figure 2 shows the distribution and as-
sociated aerosol types of the selected stations, and Table 1
lists the station name, location, aerosol type and the num-
ber of available monthly mean data points. The aerosol-type
information for the AERONET stations is mostly obtained
from existing references including Kinne et al. (2003), Kahn
et al. (2010), and Garcia et al. (2012). For several stations,
not found in the literature, the aerosol type is inferred from
the station description available on the AERONET website
(http://aeronet.gsfc.nasa.gov/). The AERONET AOD is con-
verted to 500 nm using measurements from 380 to 870 nm by
applying a second-order polynomial fitting of ln (AOD) vs.
ln (wavelength), as recommended by Eck et al. (1999).

3 Methodology

3.1 Treatment of missing data

As mentioned in Sect. 2.5, the completeness of time series
is critical to the construction of the temporal covariance ma-
trix. For AERONET data, we apply a linear interpolation to
the time series to fill the gaps. The interpolation is performed
on the deseasonalized data constructed by removing the mul-
tiyear average seasonal cycle, so that the influence of interpo-
lation on the seasonal variability will be minimized. The full
data series is then reconstructed by adding the seasonal cy-
cle back. To test the impact of interpolation on the variability
of the original time series, we perform cross-validation us-
ing the time series from eight stations (Banizoumbou, Bratt’s
Lake, CARTEL, Capo Verde, Carpentras, Dakar, GSFC and
IER Cinzana) which have less than two missing data points in
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Figure 2. Locations and aerosol types of the 58 selected stations used in this analysis.

the entire study period. Specifically, tests are conducted for
gaps with one to three missing data conditions. For the cases
with one missing data point, each time one data point is re-
moved from the original time series and treated as missing
data. Interpolation is performed on the rest of the time se-
ries, and the mean square error (MSE) is calculated between
the interpolated and original time series. The procedure is
repeated until every data point has been removed once. The
process is the same for two or three missing data point cases
except each time two or three consecutive data points are
treated as missing. The average of the MSE in then com-
pared with the variance (representing variability) of the orig-
inal time series. We find that for almost all stations, interpo-
lation for the one or two missing data point cases results in a
less than 3 % perturbation on the variability, while with three
data point gaps, the error can increase to 8 %, although the
magnitude of the influence depends on the variability of the
original time series. In Fig. 3, we show an example for the
IER Cinzana station. Three random gaps with one, two and
three missing data points, respectively, are imposed on the
original time series, and the comparisons between the inter-
polated and raw time series are shown. It is seen that the in-
terpolation generally captures the variability of the raw time
series for the one and two data point gap cases. While with
three data point gaps, interpolation clearly misses the peak in
March 2009. Note that the variability at IER Cinzana is rel-
atively high compared to that at many of the other stations.
Thus the interpolation performs better for stations with less
variability. We therefore consider that interpolating over one
or two missing data point intervals should not seriously im-
pact the results of this analysis.

For the satellite data, we focus on the 60◦ S–60◦ N domain
where the monthly mean products have nearly full cover-
age. Nonetheless, we do find that there a few regions with
continually missing data. These regions include the Tibet
Plateau for SeaWiFS and OMI and the intertropical conver-
gence zone for SeaWiFS. For these regions, we apply a data

Figure 3. Interpolation test using data for the IER Cinzana station.
Three gaps with one, two and three data points are removed and
interpolated back. The black curve shows the original time series
and the red parts are interpolated. The blue stars indicate missing
data for each experiment.

availability mask to each monthly mean map to exclude them
from the analysis. Figure 3 shows the mask of the four data
sets. The hole of central Australia on the MODIS data mask
is not due to missing data but because of negative values in
the DT retrievals. The MODIS DT algorithm allows small
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Table 1.Location, aerosol type, and number of monthly means used
in this analysis (N) for the selected AERONET stations.

Station name Longitude Latitude Type N

North America

Billerica −71.269 42.528 Rural 62
CARTEL −71.931 45.379 Urban 70
CCNY −73.949 40.821 Urban 60
Egbert −79.75 44.226 Rural 65
GSFC −76.84 38.992 Urban 72
MD Science Center −76.617 39.283 Urban 67
SERC −76.500 38.883 Rural 58
Bratt’s Lake −104.7 50.28 Rural 70
BSRN BAO Boulder −105.006 40.045 Rural 68
Railroad Valley −115.962 38.504 Dust 63
Rimrock −116.992 46.487 Rural 65
Saturn Island −123.133 48.783 Rural 64
Sioux Falls −96.626 43.736 Rural 58

South America

Alta Floresta −56.104 −9.871 Biomass 62
CUIABA-MIRANDA −56.021 −15.729 Biomass 56
Sao Paulo −46.735 −23.561 Mixeda 58

Europe

Avignon 4.878 43.933 Urban 62
Barcelona 2.117 41.386 Urban 67
Carpentras 5.058 44.083 Urban 70
Dunkerque 2.368 51.035 Urban 67
Forth Crete 25.282 35.333 Dust 69
Hamburg 9.973 53.568 Urban 59
IMS-METU-ERDEMLI 34.255 36.565 Rural 60
Lecce University 18.111 40.335 Urban 61
Lille 3.142 50.612 Urban 69
Minsk 27.601 53.92 Urban 64
Missoula −114.083 46.917 Rural 68
Moldova 28.816 47.000 Urban 62
Moscow MSU MO 37.510 55.700 Urban 64
OHP OBSERVATOIRE 5.71 43.935 Rural 62
Palaiseau 2.208 48.700 Rural 67
Rome Tor Vergata 12.647 41.84 Urban 64

Africa

Banizoumbou 2.665 13.541 Dust 71
Blida 2.881 36.508 Dust 68
Capo Verde −22.935 16.733 Dust 71
Dakar −16.969 14.394 Dust 70
Evora −7.912 38.568 Rural 61
IER Cinzana −5.934 13.278 Mixedb 72
Ilorin 4.34 8.32 Mixedb 62
Izana −16.499 28.309 Dust 72
Mongu 23.151 −15.254 Biomass 59
Skukuza 31.587 −24.992 Mixedc 63

a mixture of urban industrial and biomass burning,b mixture of dust and biomass burning,
c mixture of urban industrial and biomass burning,d mixture of urban industrial and dust,
e mixture of urban industrial and oceanic.

negative values to avoid statistical bias (Levy et al., 2009).
For central Australia, the DT and DB products are averaged
during the austral winter (June, July, August) when NDVI is
between 0.2 and 0.3. However, the DT AOD is consistently
negative while the DB AOD is usually quite small during this
season. As a result, the averaged values often become nega-
tive. Because negative AODs are not present in the other data

Table 1.Continued.

Station name Longitude Latitude Type N

Asia

Kanpur 80.232 26.513 Urban 63
Gandhi College 84.128 25.871 Rural 40
Pune 73.805 18.537 Urban 45
Karachi 67.030 24.870 Mixedd 56
Beijing 116.381 39.997 Urban 66
Shirahama 135.357 33.693 Urban 68
Singapore 103.78 1.298 Urban 56
Mukdahan 104.676 16.607 Biomass 58
SEDE BOKER 34.782 30.855 Dust 69
Dhadnah 56.325 25.513 Dust 59
Solar Village 46.397 24.907 Dust 66

Australia

Birdsville 139.346 −25.899 Dust 59
Canberra 149.111 −35.271 Urban 58
Lake Argyle 128.749 −16.108 Biomass 59

Central America

La Parguera −67.045 17.97 Mixede 64
Mexico City −99.182 19.334 Urban 58

sets and because converting these AODs to 500 nm on a log-
arithmic scale leads to imaginary numbers, we removed the
central Australia data from the MODIS data. Overall, the re-
moved data only account for a small portion of the global
map and do not affect the results in other regions.

3.2 Combined maximum covariance analysis

The CMCA technique can be viewed as a combination of
MCA and CPCA analyses. A detailed mathematical descrip-
tion of PCA and MCA (a.k.a. SVD – singular value de-
composition) analyses can be found in Björnsson and Vene-
gas (1997). Bretherton et al. (1992) provided a comprehen-
sive intercomparison of these methods in the analysis of cli-
mate data. MCAs have been widely used to find coupled
modes between observations of different variables, such as
sea surface temperature and wind stress (Chang et al., 1997)
and sea surface temperature and precipitation (Knight et al.,
2006), or between observations from different regions to
establish remote links (e.g., X. Li et al., 2014). CPCA is
less widely used mainly due to the “equal weight” assump-
tion which will be discussed in the following text. In Li
et al. (2014a, b), the two techniques were first applied to
the intercomparison of different measurements of the same
variable. Also see Li et al. (2014a, b) for the detailed de-
scription of the MCA and CPCA methods. In CMCA, a
SVD is performed between the joint satellite data matrix and
AERONET data matrix to extract the modes of variability
that maximize the covariance between these two fields. In
this way, the modes retain the orthogonality feature, and the
leading modes will both have the highest correlation between
the two data fields and explain the most variance of each indi-
vidual field. Specifically, we arrange each satellite data field
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and AERONET data by space and time dimension as

X =

 x1,1 · · · xn,1
...

. . .
...

xm,1 · · · xm,n

 , (1)

where m is the number of spatial locations (number of
grid boxes for satellite data and number of stations for
AERONET) andn is the number of measurements at each
location (length of the data time series). For the satellite data
setsm equals 360× 180= 64 800 (the number of grid cells),
and for AERONETm equals 58 (the number of stations).n

equals 72, which is the number of months in the 6-year pe-
riod. The data are centered by removing the temporal mean
from each row ofX. In addition, we also create an anomaly
data matrix by removing the multiyear-averaged seasonal cy-
cle from each row, in order to examine the interannual vari-
ability.

After organizing the data sets in this manner, the data ma-
trix of the satellites are combined into one large 4m × n ma-
trix as

Xsat=


XMODIS
XMISR
XSeaWiFS
XOMI

 . (2)

It is important to note that combining the data matrices as-
sumes equal weight, which requires that the fields being com-
bined have the same measure. For the question here, as the
four fields are the measurement of the same physical quantity
(AOD) and mapped to the same spatial resolution (1◦

× 1◦),
this prerequisite is satisfied. Nonetheless, due to sampling
and retrieval uncertainties, the satellite fields are not measur-
ing the “true AOD state” and differences will appear in the
analysis results. These differences will be the focus of exam-
ination and comparison, which offer insights into possible
issues of the data sets.

Next, we construct the cross-covariance matrixC between
the joint satellite fieldXsat and the AERONET data matrix
XAERONET as

C =
1

m − 1
XAERONETXT

sat, (3)

whereXT
AERONET denotes the transpose ofXAERONET. The

dimensions ofC, XAERONET andXsat are 72× 72, 58× 72
and 64 800× 72, respectively. The orthogonal modes that
maximize the covariance betweenXsat and XAERONET are
then found by a SVD ofC:

C = USVT, (4)

where U and V are orthogonal matrices of dimensions
58× 72 and 64 800× 72, respectively, andS is a 72× 72 ma-
trix containing the singular values. The columns ofU andV
are singular vectors forXAERONET andXsat, respectively, and

each pair of singular vectors represent covarying modes be-
tween the two data fields. In the SVD, the singular values
in S which is the covariance between each pair of singular
vectors are organized in descending order of magnitude, so
that the first mode represents the most covariance between
the two fields. As the covariance can be expressed as

cov(X,Y) = rX,Y

√
S2

XS2
Y , (5)

where cov(X,Y) denotes the covariance betweenX and Y,
rX,Y denotes the correlation betweenX andY, andS2

X and
S2

Y are the variances ofX and Y respectively, maximizing
the covariance implies the maximization of both the corre-
lation and the variances. Therefore, the leading modes will
represent the correlated variability in the two data sets and
account for most of the variance.

The singular values inU and V are the spatial patterns
of AERONET data and the combined satellite field, respec-
tively. To find the spatial pattern of each individual satellite
field, we divideV back into four segments as

V =


V1
V2
V3
V4

 . (6)

Each segment will have dimensionm × n, whose columns
are the spatial patterns of each individual satellite data set.
The time seriesA andB describing how each mode oscillates
in time are then found by projectingU back toXAERONETand
projectingV back toXsat:

A = XAERONETU, (7)

B = XsatV. (8)

By letting σi denote theith element ofS, the fraction of
squared covariance (SCF) explained by theith mode is then
given as

SCF=
σ 2

i

N∑
j=1

σ 2
j

. (9)

The major advantage of CMCA over MCA and CPCA
is that CMCA effectively incorporates all available infor-
mation. We will be able to examine the coherency as well
as discrepancies across satellite data sets in parallel, and to
further identify the strengths and weaknesses of each data
set by evaluating their individual spatial modes against the
AERONET results.

Meanwhile, some limitation and caveats of CMCA or
spectral decomposition techniques in general should be kept
in mind before applying them. First, caution must be taken
when combining different data fields. As previously noted,
the data fields being combined are assumed to have equal
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Figure 4. Data mask for the four satellite data sets. The white ar-
eas over land show the grid boxes with persistently missing data
(more than half of the entire time series) that are removed from this
analysis.

weight. Therefore, it is usually difficult to combine measure-
ments of different quantities, as their degree of variability
can be difficult to measure and compare. Second, the spatial
representativeness of the ground-based measurements may
affect the interpretation of the results. The disagreements be-
tween satellite and AERONET could also be attributed to
the low spatial representativeness of the AERONET station
rather than data accuracy. See Li et al. (2014a) for a dis-
cussion on this issue. Another possible issue is “mode leak-
age” which may also affect the physical interpretation. As
these techniques are mathematical in nature, it is possible
that some unrelated variability may appear in the same mode
or that a single variability may be split into different modes.
Li et al. (2014a) discussed an example for South America,
where the signal is separated into both seasonal and semisea-
sonal modes due to the phase difference. This issue is not
significant in comparison studies like the current one, as we
are mainly concerned with the consistency in dominant vari-
ability. However, special attention must be paid to these arti-
facts when using the techniques to study physical problems.
Finally, the major advantages of spectral techniques are di-
mensional reduction and efficiency. By simultaneously com-
paring the space–time variability, it is possible to quickly
identify possible problems with (or differences between) the
individual data sets, while it is not possible to find the cause
of the problem or sources of uncertainty. Therefore, further
examination of the regions identified by the spectral analysis
is still needed to uncover the causes or mechanisms respon-
sible for the disagreement.

4 Results

We demonstrate the usage of the CMCA technique by pre-
senting the results of the global analysis for both the full and
anomaly data, followed by two typical regional examples.

Figure 5. Variances explained by the first 20 modes of the CMCA
analysis of global data from satellites and AERONET.

4.1 Global analysis – full data set

An analysis is first performed on the full data sets with the
seasonal cycle left in. Figure 5 shows the variance explained
by the first 20 modes. Each of the first three modes explains
greater than 10 % of the variance, and these three modes to-
gether explain∼ 70 % of the total variance. Moreover, there
is a sharp drop in variance from mode 3 to mode 4. Based
on these facts, we determine the first three modes to be
dominant. The spatial patterns and PC time series are dis-
played in Fig. 6. The results are very similar to the those
of PCA and MCA as presented by our previous studies (Li
et al., 2014a, b), and thus we only briefly summarize them
here. The first two modes represent the seasonal behavior
of aerosol loading for the Northern Hemisphere and South-
ern Hemisphere, respectively. The two modes should be pri-
marily controlled by meteorological conditions, in particu-
lar, the seasonal changes of temperature, wind and precip-
itation which affect the emission, transport and removal of
aerosols. The third mode captures regions with semiannual
variability including the Sahel, northern India and southeast-
ern Asia. South America also shows a weak positive signal
in this mode because the September peak in PC 3 overlaps
the peak biomass-burning season over South America (see
Li et al., 2014a). Special attention should be paid, however,
to the agreements and disagreements between the signals at
the AERONET stations and those of the underlying maps, as
these provide information on the capability of each data set
to represent the associated aerosol variability. For example,
in mode 1, all four data sets and AERONET exhibit posi-
tive signals with similar strength over dust dominated regions
of northwestern Africa and the Arabian Peninsula. This is
an indication that dust variability over these regions is well
represented by all of the satellite data sets. The same ap-
plies to the biomass-burning aerosol-source regions of South
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Figure 6. The first three modes of CMCA analysis of global satellite and AERONET data. The number in the upper right corner of each
spatial map indicates the variance explained by this mode. TheR value on the PC panels indicates the correlation coefficient between the
time series for AERONET and that for the combined satellite field. The color of the dots indicates the strength of the AERONET signal and
shares the same color scale as satellite data. Overall, the spatial patterns of all four data sets agree with AERONET for northern Africa, the
Arabian Peninsula (mode 1), South America, southern Africa and the Sahel (mode 2).

America, the Sahel and southern Africa shown in mode 2.
Mode 3 also reveals reasonable agreement in the semiannual
variability of aerosol optical depth. Note the correlations be-
tween the PC time series are also quite high (above 0.9) for
these three modes. However, notable differences can also be
identified across the data sets. An obvious example is the In-
dian subcontinent. In mode 1, MODIS, MISR and OMI all
have positive signals over this region, while SeaWiFS has
weak negative signals. Turning to AERONET, we find that
the three stations over this region also have negative signals,
consistent with SeaWiFS but different from MODIS, MISR
and OMI. It is thus highly possible that SeaWiFS captures
well the seasonality of aerosol variability over the Indian
subcontinent while the other three data sets may have lower
skills over this region. As a result, this region will be exam-
ined in greater detail in the next section. In fact, with spatial
modes from multiple satellites, regions with the highest un-
certainty can be highlighted by examining the spread (stan-
dard deviation) of the four spatial patterns. Figure 7 shows
the standard deviation fields of the four spatial maps for each

mode. Regions with largest spread are marked by red rect-
angles. For mode 1, in addition to India, eastern Asia also
appears to have larger disagreement. This region has been an
emerging global-aerosol-source region over the past decade.
The aerosol composition is complicated with heavy pollu-
tion from industrialized urban areas, especially in eastern
China, and also seasonal dust pollution from central north-
ern Asia, which contributes to the difficulty in satellite re-
trievals. However, as most AERONET stations in eastern
China were established in recent years, we found almost no
qualified stations for the purpose of this study. The large dis-
agreement across the satellite measurements over this region
therefore suggests the necessity for continuous monitoring of
aerosol properties of the surface in this region. For mode 2,
South America, the Sahel, central Asia and Borneo appear
to have the largest discrepancy. Looking back to Fig. 6, it
can be seen that for South America and the Sahel, MODIS
and SeaWiFS both have strong positive and negative sig-
nals, respectively, and in good agreement with AERONET,
while the signals for MISR and OMI are generally weaker,
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Figure 7. Satellite data standard deviation (spread) maps for the
three modes shown in Fig. 6. Regions with largest spread, and thus
highest uncertainty, are indicated by the red boxes.

especially for MISR over the Sahel and OMI over South
America. Li et al. (2014b) have discussed the problems in
these two satellite data sets for these two regions and found
underestimation in MISR and OMI during the peak biomass-
burning season over South America, while MODIS overesti-
mates the biomass-burning peak (see also Levy et al., 2010).
The weaker spring/fall seasonality for MISR over the Sahel
is due to its underestimation of AOD during the (boreal) fall
and overestimation of AOD during the (boreal) spring (Li
et al., 2014b). The CMCA successfully confirms these con-
clusions with the help of AERONET. Li et al. (2014b) also
investigated the problem for central Asia around the Takla
Makan Desert and indicated that the low sampling frequency
of MISR may miss dust emission events and thus lead to
an underestimation of the variability. Unfortunately, there is
no AERONET station in this area to confirm this hypothe-
sis. The disagreement over Borneo in mode 2 comes from
the positive signals seen on MODIS and MISR maps, but no
signal in OMI. SeaWiFS has consistently missing data over
this region due to its difficulty with cloud screening. With
the lack of IR (infrared) channels, cloud detection over land
depends on spatial variability, while some aerosol plumes
may appear similar to clouds. Satellite retrievals tend to have
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Figure 8. Variances explained by the first 20 modes of the CMCA
analysis of global satellite and AERONET anomaly data.

conservative cloud screening in order to avoid misclassifi-
cation of clouds as aerosols. Therefore, in regions such as
Borneo where small clouds and aerosol plumes often exist, it
is likely that some smoke plumes are screened out as clouds
(A. Sayer, personal communication, August 2012). Again no
qualified AERONET station is available here. As this region
is a major biomass-burning source region (Generoso et al.,
2003; van der Werf et al., 2006), it should also be the fo-
cus of future AERONET instrumentation deployment. A few
AERONET stations have already been established and have
begun acquiring data in recent years, and a more complete
study of the seasonal and interannual variability of this re-
gion will become possible in the future. The differences in
mode 3 are similar to those in modes 1 and 2 and we there-
fore omit the discussion here. It should be kept in mind that
the disagreements observed in Fig. 7 could be attributed to

both data accuracy and observability of each sensor as well as
the representativeness of AERONET station data. Low (high)
bias in the data at high AOD conditions will lead to weaker
(stronger) seasonality, such as the high bias in MODIS sea-
sonality over South America. The observability defined here
refers to the capability of the sensor to fully represent aerosol
properties both spatially and temporally. It reflects the com-
bined effect of satellite sampling associated with swath width
and aerosol obscuration by clouds at the time of satellite
overpass. In the analysis here using Level 3 data, the observ-
ability issues could be more dominant and account for most
discrepancies, such as those for the Takla Makan Desert and
Borneo. Moreover, while AERONET retrievals are highly ac-
curate, they may also have this “observability” issue due to
the sampling frequency and the presence of clouds. The spa-
tial representativeness of each AERONET station may also
affect the interpretation of the results, which was discussed
by Li et al. (2014a).
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Figure 9. The first three modes of the CMCA analysis of anomaly data, representing interannual variability for South America, northwestern
Africa and eastern Asia, respectively. The four satellite data sets also agree well with AERONET.

4.2 Global analysis – anomaly data set

With respect to the results of the analysis of the anomaly
data set, we again chose to present the first three modes
based on the behavior of variance explained with the curve
shown in Fig. 8. These three modes, as shown in Fig. 9,
are also consistent with Li et al. (2013, 2014a, b) and re-
veal aerosol-source regions and their interannual variability.
It is encouraging that all four satellite data sets agree well
with AERONET qualitatively. Quantitative examination of
the standard deviation maps (Fig. 10) reveals discrepancies in
the signal strength over South America and the Sahel, which
are similar to those in Fig. 7 and previously discussed by Li
et al. (2013). In mode 3, eastern Europe is highlighted with
larger uncertainty. This is related to an extreme event and will
be further investigated in the next section. Eastern and south-
eastern Asia also appear in the spread map of mode 3 which
again suggests that additional observations are needed in
these areas. While the global results mainly confirm our pre-
vious findings, the advantage of using CMCA is clearly seen:
comparing multiple satellite data sets in parallel and simul-
taneously validating the variability associated with specific
aerosol types and/or source regions against AERONET in

one spatial map. MCA only allows making comparisons be-
tween one data set and AERONET, while cross-comparisons
between satellite data sets are not possible, and CPCA can
only be used to compare different satellite data sets but it is
not able to evaluate the strengths and weaknesses of the indi-
vidual data sets because it cannot accommodate the ground-
truth AERONET data. CMCA successfully solves these two
problems and makes full use of all of the available informa-
tion. It is also an efficient way to provide insights into pos-
sible problems and highlight the regions with the largest un-
certainty in AOD.

4.3 Regional analysis

In this section, we present the results of two regional case
studies. These studies focus on the added information content
of the temporal variability, and demonstrate the advantage of
the CMCA technique in identifying problems associated with
extreme events, interannual variability and seasonal variabil-
ity. In the global analysis of the anomaly data (focusing on
interannual variability), we identified a “hot spot” in eastern
Europe, i.e., a region of large disagreement between the four
data sets (mode 3 in Fig. 9). Here we further examine this
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disagreement using CMCA by isolating this region. CMCA
is performed over Europe within the spatial domain of 6◦ W–
56◦ E, 40–60◦ N. The first mode of the anomaly data, shown
in Fig. 11, clearly highlights the eastern European region.
This mode accounts for 42.3 % of the variance. On the spatial
maps, both MODIS and MISR exhibit strong positive signals
while SeaWiFS and OMI only have weak signal. The two
AERONET stations located in this region also have positive
signals in accordance with MODIS and MISR but disagree
with SeaWiFS and OMI. The PC time series of this mode
exhibits a high peak in August 2010. Therefore, this mode is
most likely associated with the documented intense Russian
wildfire in the summer of 2010 (Witte et al., 2011; Kono-
valov et al., 2011; Chubarova et al., 2012). And the patterns
of the spatial maps of the four satellites indicate that MODIS
and MISR capture this event while it is less well-represented
in the SeaWiFS and OMI data sets. To confirm this conclu-
sion, we compare the time series between the AERONET
data and the satellite data at the Moscow MSU MO sta-
tion, located at the center of the positive anomaly with the
strongest signal. The results are presented in Fig. 12 and it
is clearly seen that AERONET data at this station are mostly
temporally flat except for an extremely strong peak in 2010.
MODIS and MISR agree well with AERONET with peaks
of similar strength. SeaWiFS also has a peak in 2010, but
much weaker compared to AERONET, while the OMI data
do not show any outstanding peaks in this year. Various rea-
sons may account for the problems in SeaWiFS and OMI.
For example, overconservative cloud screening may mistake
smoke pixels for clouds, and the row anomaly developed
in the OMI instrument since 2008 (http://www.knmi.nl/omi/
research/product/rowanomaly-background.php) may lead to
OMI missing this event due to reduced sampling. The re-
sults from our CMCA analysis suggest that the retrieval of
AOD by SeaWiFS and OMI may need to be improved for this
region to sufficiently represent this type of extreme event.
Our next example focuses on the analysis of annual vari-
ability over the Indian subcontinent, which is another major
source of discrepancy revealed through the global analysis
(see Fig. 7). A major difficulty encountered for India is that
few AERONET stations over this area have qualified data
records for the construction of the temporal covariance ma-
trix. Therefore, we only have four stations available for this
analysis.

Nonetheless, the distribution of these stations does cover
the typical aerosol-source regions of the Gangetic Plain,
Thar Desert and southern India. Figure 13 shows the first
two modes over India, which account for∼ 98 % of the
variance. The first mode mainly represents the variability
of dust aerosols around the Thar Desert. The PC has a
regular summer/winter (boreal) seasonal cycle. The second
mode highlights the Gangetic Plain in northern India, and
its PC time series displays a semiannual variability with two
peaks in the late (boreal) spring–summer and the fall sea-
sons, respectively. The Gangetic Plain has highly variable

Figure 10. Satellite data standard deviation (spread) maps of the
three CMCA modes shown in Fig. 9. Regions with the largest
spread, and thus highest uncertainty, are indicated by red boxes.

aerosol types in different seasons. During the pre-monsoon
(March–May) and monsoon seasons (June–August), this re-
gion is primarily influenced by dust aerosols, while during
the post-monsoon (September–November) and winter sea-
sons (December–January), anthropogenic aerosols compose
a larger fraction of the total aerosol loading (Singh et al.,
2004; Dey and Di Girolamo, 2010). The four data sets all
agree with AERONET over the Thar Desert in mode 1. How-
ever, with respect to the Gangetic Plain, more differences ap-
pear. In mode 1, only SeaWiFS shows a coherent signal with
AERONET over these regions with negative signals around
the two AERONET sites in the Gangetic Plain (Kanpur and
Gandhi College). The other three satellite data sets, espe-
cially MODIS, have positive signals and are opposite to those
of AERONET. The seasonality of the Gangetic Plain is fur-
ther isolated in mode 2. In this mode, SeaWiFS and MODIS
capture the semiannual variability relatively well, while the
signals for MISR and OMI are comparatively weaker than
those observed by AERONET, SeaWiFS and MODIS. This
result implies that disagreements in the seasonality of AOD
for the Gangetic Plain may exist in the MODIS, MISR and
OMI data sets and should therefore be examined further.
We also examine the interannual variability of the Gangetic
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Figure 11.The first CMCA mode over Europe showing the intense
wildfire in Russia. Both MODIS and MISR exhibit strong positive
anomalies and agree with AERONET. The distribution of positive
signals in SeaWiFS and OMI are less extensive.

Plain region using the anomaly data. This region appears
in the dominant mode, which is shown in Fig. 14. Interest-
ingly, while the SeaWiFS data sets best represent the sea-
sonal variability of AOD over the Gangetic Plain, Fig. 14 in-
dicates that on an interannual timescale, this data set differs
the most from AERONET compared to the other three data
sets. The positive anomalies on the SeaWiFS spatial map are

Figure 12.Comparison between the AOD time series for the satel-
lite and AERONET data at the Moscow MSU MO station (the loca-
tion is indicated in the top panel of Fig. 11).

both narrower and weaker. To explain this paradox in the Sea-
WiFS data, as well as the problems in the MODIS, MISR
and OMI data sets, we compare the time series from the
AERONET measurements and satellite data for two stations:
Kanpur and Gandhi College. The raw time series, multiyear-
averaged seasonal cycle, and the anomaly time series for
each of the satellite data plotted against AERONET at Kan-
pur and Gandhi College are shown in Figs. 15 and 16, re-
spectively. The correlation coefficient between the satellite
and AERONET time series on each panel is indicated in the
upper-left corner in black. For the Kanpur station, we can
see that, overall, SeaWiFS data have the highest correlation
with AERONET for the raw time series and seasonal cycle.
Especially for the latter, the correlation is above 0.9. Com-
pared with the AERONET time series, MISR and OMI both
have an overall low bias, which is larger during the win-
ter months. For MODIS, however, there is an overall high
bias during the summer months but an underestimation dur-
ing the winter. These differences lead to a stronger summer
peak and weaker winter peak in MODIS, MISR and OMI
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Figure 13. The first two CMCA modes over India, representing
aerosol seasonal variability for the Thar Desert and Gangetic Basin,
respectively. In mode 1, the magnitude of the signal of Kanpur is
−0.18, and for Gandhi College it is−0.70. In mode 2, the signal
for Kanpur is 1.26 and for Gandhi College it is 0.73. Compared with
MODIS, MISR and OMI, the SeaWiFS spatial maps agree well with
AERONET for both modes 1 and 2 and best capture the seasonality
over the Gangetic Plain region.

data, which are responsible for the positive projection of the
winter–summer seasonality (PC 1 of Fig. 13) on these three
data sets. However, for AERONET and SeaWiFS, the inten-
sity of the winter peak is comparable to or even stronger than
the summer peak. As a result, the variability of these two data
sets is captured by PC 2, which has an associated semiannual

Figure 14.The first mode of the anomaly data over the Indian sub-
continent. Unlike Fig. 13, on interannual timescales, MODIS and
MISR best represent the AOD variability over the Gangetic Plain,
while the SeaWiFS and OMI patterns have less coherency with
AERONET.

timescale. The comparison between the interannual variabil-
ity using AOD anomalies (right column in Fig. 15), how-
ever, displays a completely different picture. Unlike the raw
time series and seasonal cycle, SeaWiFS now has the low-
est correlation with AERONET on an interannual timescale.
Not only does it fail to capture several strong anomalies in
2005, 2008 and 2009, but also the variance of the time se-
ries is considerably lower than that of AERONET. The vari-
ance for the SeaWiFS anomaly time series is 0.0041, while
that for AERONET is 0.0136, and those for MODIS, MISR
and OMI are 0.0113, 0.0083 and 0.0051, respectively. Ac-
cordingly, the weaker signal in the SeaWiFS spatial mode
in Fig. 14 is attributed to both this low correlation and low
variance. The results for Gandhi College convey the same

Atmos. Meas. Tech., 7, 2531–2549, 2014 www.atmos-meas-tech.net/7/2531/2014/



J. Li et al.: Application of spectral analysis techniques 2545

 1001	
  
Figure 15. Comparison between the raw AOD time series (left column), multi-year 1002	
  
averaged seasonal cycle (middle column) and anomaly time series (right column) for 1003	
  
Kanpur (location marked in the first panel of Figure 14). The gray curves show the grand 1004	
  
mean of all five datasets. The R values in each panel indicate the correlation coefficient 1005	
  
between satellite and AERONET (black) and between satellite and grand mean (gray). 1006	
  
SeaWiFS data have the highest correlation with AERONET and grand mean in terms of 1007	
  
seasonality, however, its agreement with AERONET in terms of interannual variability is 1008	
  
not as good as the other three datasets.  1009	
  

1010	
  

05 06 07 08 09 10
0

0.5

1

1.5

50
0 

nm
 A

O
D

Kanpur
Time Series

 

 
R=0.38
R=0.79

Grand Mean
AERONET
MODIS

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
0

0.2

0.4

0.6

0.8

1
R=0.08
R=0.8

Kanpur
Seasonal Cycle

05 06 07 08 09 10
−0.5

0

0.5 R=0.4
R=0.79

Kanpur
Anomalies

05 06 07 08 09 10
0

0.5

1

1.5

50
0 

nm
 A

O
D

 

 
R=0.45
R=0.85

Grand Mean
AERONET
MISR

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
0

0.2

0.4

0.6

0.8

1
R=0.6
R=0.96

05 06 07 08 09 10
−0.5

0

0.5 R=0.22
R=0.74

05 06 07 08 09 10
0

0.5

1

1.5

50
0 

nm
 A

O
D

 

 
R=0.64
R=0.9

Grand Mean
AERONET
SeaWiFS

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
0

0.2

0.4

0.6

0.8

1
R=0.81
R=0.94

05 06 07 08 09 10
−0.5

0

0.5 R=0.02
R=0.71

05 06 07 08 09 10
0

0.5

1

1.5

Year

50
0 

nm
 A

O
D

 

 
R=0.27
R=0.78

Grand Mean
AERONET
OMI

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
0

0.2

0.4

0.6

0.8

1

Month

R=0.3
R=0.83

05 06 07 08 09 10
−0.5

0

0.5

Year

R=0.2
R=0.65

Figure 15. Comparison between the raw AOD time series (left column), multiyear-averaged seasonal cycle (middle column) and anomaly
time series (right column) for Kanpur (location marked in the top-left panel of Fig. 13). The gray curves show the grand mean of all five data
sets. TheR values in each panel indicate the correlation coefficient between satellite and AERONET (black) and between satellite and grand
mean (gray). SeaWiFS data have the highest correlation with AERONET and the grand mean in terms of seasonality; however, its agreement
with AERONET in terms of interannual variability is not as good as the other three data sets.

information, indicating that SeaWiFS has the highest correla-
tion with AERONET for season variability but the lowest for
interannual variability. Moreover, because each data set has
certain limitations, such as missing data for SeaWiFS in July
and August, low sampling frequency for MISR, row anoma-
lies for OMI, and AERONET stations possibly not fully rep-
resenting the entire satellite grid box, we also compared each
data set to the grand mean (shown in gray curves) which may
be a better representation of the truth. The correlation be-
tween the time series of each satellite and the grand mean is
indicated in the upper-left corner of each panel in gray num-
bers. As expected, the agreement between the satellite data
and the AERONET grand mean is better. The results are con-
sistent with the AERONET comparison i.e., SeaWiFS best
represents seasonal variability but has the poorest agreement
for interannual variability.

From the global analysis and regional studies, we can
clearly see that the CMCA technique is both an efficient
and effective method for the analysis and comparison of

multisensor data. On a first order, spectral decomposition re-
duces data dimensionality and limits the comparison to only
the first few leading modes that explain the bulk of the vari-
ance in the data. Moreover, by integrating all available in-
formation, many variations, source regions and events can
be further confirmed. Most importantly, the analysis helps us
to identify the strengths and weaknesses of each data set in
representing aerosol variability for specific regions and on
different timescales, which is essential for understanding the
capability of the data and making the best use of it.

5 Summary

In this paper, we introduce an improved spectral decomposi-
tion technique for use in multiple data comparison and eval-
uation, based on the principal component analysis and max-
imum covariance analysis. By extracting the modes of vari-
ability that maximize the covariance between the combined
satellite field and ground-based AERONET observations, the
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Figure 16. As Fig. 15 but for Gandhi College, the other station in the Gangetic Plain. The results are basically consistent with those for
Kanpur.

CMCA has the advantage of evaluating each individual data
set using AERONET simultaneously. In addition, most re-
sults are clearly associated with specific aerosol-source re-
gions, events or temporal scales represented by each orthog-
onal mode, which associates the comparison with real phys-
ical phenomena.

Examples of global and two representative regional anal-
yses are presented and discussed to show the usage of
the CMCA method. Globally, the results indicate that all
four data sets reasonably agree with AERONET for major
aerosol-source regions, including dust over northern Africa
and the Arabian Peninsula, biomass-burning over South
America and southern Africa and mixed aerosol types over
the Sahel. The interannual variability of the source regions
also agrees well. These results suggest that these patterns are
the most believable and that we should be confident in using
all or any of the four satellite data sets in the study of aerosol
properties and their temporal variability over these regions.

The purpose of the regional case studies is to illustrate the
ability of the CMCA method to identify potential problems
in certain the data sets. The strengths and weaknesses of each
data set are identified through direct comparison between the

positive/negative signals in the spatial patterns of the satel-
lite and AERONET data maps. The nature of the problem
can then be further examined by comparing the raw time se-
ries. Moreover, the capability of each data set in capturing
the variability on seasonal and interannual timescales can
be separately assessed. The results from our regional anal-
ysis indicate that SeaWiFS and OMI did not fully represent
the intense Russian wildfire in August 2010. Their signals
are weaker compared to MODIS and MISR for this event.
The AOD seasonality over the Indian Gangetic Plain and
southern India needs to be improved for MODIS, MISR and
OMI. SeaWiFS has the best agreement with AERONET on
the seasonal variability over this region; however, on interan-
nual timescales its agreement is poorer than that for MODIS,
MISR and OMI.

Because the main purpose of this paper is to present the
CMCA technique, we did not analyze all interesting regions.
However, readers are encouraged to use this technique for
comprehensive analyses covering more regions and events,
or in studying specific regions of their interest. Although this
technique has been applied between satellite and AERONET
data, there is no doubt that it can be adapted for model–data
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comparison and validation as well as for use with other
ground-based network measurements (e.g., MPLnet). Model
validation is an important potential application of the CMCA
method. On the one hand, with multiple observational data
sets available, it is desirable to incorporate all pieces of in-
formation to yield a more robust validation. One the other
hand, as chemical transport models are usually constrained
using satellite observations, large uncertainty in observations
will also result in poorly constrained model fields. There-
fore, places where retrieval skills are low often correspond
to those where model fields are inaccurate. For example,
Trivitayanurak et al. (2012) found poor agreement between
the GEOS (Goddard Earth Observing System)-Chem simu-
lated AOD and MODIS AOD for the southeastern Asia re-
gion due to the uncertainties in satellite retrieval. The CMCA
technique will identify these regions, and thus provide in-
sights into the problems in either the satellite, the model or
both. When using model data, the model-data field should be
treated in same manner as AERONET is used here, i.e., when
the model resolution is coarser than satellite data. However,
for models with a comparable spatial resolution to the satel-
lite data, the model field can be treated as one of the satellite
fields and directly compared with the satellite data sets and
AERONET. Traditional model validation usually compares
averaged time series between model and data for the globe
and several representative regions, while the CMCA offers
a new approach with a simultaneous spatial and temporal
view. It also provides an effective and efficient way to iden-
tify problems that are not easily detected by traditional meth-
ods. With the continuous development of remote sensing data
sets as well as climate models, we believe this technique will
become a useful tool for data retrieval, data analysis and the
modeling community.
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